COVID-19 and HIV—Interaction, clinical course, outcome, and prognosis

Authors

DOI:

https://doi.org/10.14748/ngfcp473

Keywords:

antiretroviral therapy (ART), co-infection, SARS-CoV02, HIV, immunosuppression

Abstract

Introduction: Coronaviruses were traditionally associated with mild respiratory illness until the emergence of SARS-CoV, MERS-CoV, and more recently SARS-CoV-2, the causative agent of COVID-19. HIV infection, characterized by progressive immunosuppression, raises important considerations in the context of SARS-CoV-2 co-infection.

Aim: The aim of this article is to evaluate the clinical, immunological, and therapeutic intersections between HIV and COVID-19.

Materials and Methods: A targeted review of peer-reviewed literature and relevant clinical data was conducted to explore the interaction between SARS-CoV-2 and HIV, focusing on clinical course, outcomes, and prognosis in co-infected patients.

Results and Discussion: Current evidence indicates that HIV-positive individuals, particularly those receiving antiretroviral therapy (ART), are not at significantly increased risk of severe COVID-19 compared to the general population. In certain cases, lower CD4+ T-cell counts may attenuate hyper-inflammatory responses such as cytokine storm. However, co-infection may elevate thrombotic risk and complicate clinical management. The COVID-19 pandemic also disrupted HIV care and treatment continuity, potentially affecting long-term outcomes.

Conclusion: While current data are reassuring regarding COVID-19 severity in HIV-positive patients on ART, the evolving nature of SARS-CoV-2 and the persistent global burden of HIV underscore the need for continued research and preparedness in managing of this co-infection.

Author Biographies

  • Iliyan Todorov, Medical University of Varna

    Department of Infectious Diseases, Parasitology, and Dermatovenereology, Faculty of Medicine

  • Bella Naydenova, Medical University of Varna

    Department of Infectious Diseases, Parasitology, and Dermatovenereology, Faculty of Medicine

  • Meliz Gyursel, MD, Medical University of Varna

    Department of Infectious Diseases, Parasitology, and Dermatovenereology, Faculty of Medicine

References

[1] Tyrrell DA, Bynoe ML. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J. 1965;1(5448):1467-70. doi:10.1136/bmj.1.5448.1467. DOI: https://doi.org/10.1136/bmj.1.5448.1467

[2] Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121(1):190-3. doi:10.3181/00379727-121-30734. DOI: https://doi.org/10.3181/00379727-121-30734

[3] McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci U S A. 1967;57(4):933-940. doi:10.1073/pnas.57.4.933. DOI: https://doi.org/10.1073/pnas.57.4.933

[4] Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol. 1967;1(2):175-8. doi:10.1099/0022-1317-1-2-175. DOI: https://doi.org/10.1099/0022-1317-1-2-175

[5] Tyrrell DA, Bynoe ML. Cultivation of viruses from a high proportion of patients with colds. Lancet. 1966;1(7428):76-7. doi:10.1016/s0140-6736(66)92364-6. DOI: https://doi.org/10.1016/S0140-6736(66)92364-6

[6] World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. WHO; 2003. Available from: https://www.who.int/csr/sars/country/table2004_04_21/en/

[7] Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953-66. doi:10.1056/NEJMoa030781. DOI: https://doi.org/10.1056/NEJMoa030781

[8] World Health Organization. SARS: How a global epidemic was stopped. WHO; 2006. Available from: https://www.who.int/csr/disease/sars/impact/en/

[9] Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013;13(9):752-61. doi:10.1016/S1473-3099(13)70204-4. DOI: https://doi.org/10.1016/S1473-3099(13)70204-4

[10] World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). WHO; 2024. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/mers-cov-update

[11] World Health Organization. Pneumonia of unknown cause – China. Disease outbreak news; 2019 Dec 31. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2019-DON301

[12] Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. doi:10.1056/NEJMoa2001017. DOI: https://doi.org/10.1056/NEJMoa2001017

[13] World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it. WHO; 2020 Feb 11. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it

[14] World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. WHO; 2020 Mar 11. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

[15] World Health Organization. WHO Coronavirus (COVID-19) Dashboard. WHO; 2021 Dec. Available from: https://covid19.who.int/

[16] Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-6. doi:10.1038/s41586-020-2521-4. DOI: https://doi.org/10.1038/s41586-020-2521-4

[17] Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-42. doi:10.1001/jama.2020.2648. DOI: https://doi.org/10.1001/jama.2020.2648

[18] Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. doi:10.1016/S0140-6736(20)30566-3. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3

[19] UNAIDS. Global AIDS Update 2023. Geneva: UNAIDS; 2023. Available from: https://www.unaids.org/en/resources/documents/2023/global-aids-update-2023

[20] Dorward J, Khubone T, Gate K, et al. The impact of the COVID-19 lockdown on HIV care in 65 South African primary care clinics: an interrupted time series analysis. Lancet HIV. 2021;8(3):e158-65. doi:10.1016/S2352-3018(20)30359-3. DOI: https://doi.org/10.1016/S2352-3018(20)30359-3

[21] Gupta RK, Lucas SB, Landay A, et al. HIV-1 infection and COVID-19 outcomes: a systematic review and meta-analysis. Clin Infect Dis. 2021;73(7):e2450–8. doi:10.1093/cid/ciaa1717. DOI: https://doi.org/10.1093/cid/ciaa1717

[22] Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312(5996):763-7. doi:10.1038/312763a0 DOI: https://doi.org/10.1038/312763a0

[23] Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657-700. doi:10.1146/annurev.immunol.17.1.657. DOI: https://doi.org/10.1146/annurev.immunol.17.1.657

[24] Chan DC, Kim PS. HIV entry and its inhibition. Cell. 1998;93(5):681-4. doi:10.1016/s0092-8674(00)81430-0. DOI: https://doi.org/10.1016/S0092-8674(00)81430-0

[25] De Clercq E. The design of drugs for HIV and HCV. Nat Rev Drug Discov. 2007;6(12):1001-18. doi:10.1038/nrd2424 DOI: https://doi.org/10.1038/nrd2424

[26] Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279-90. Published 2012 Mar 16. doi:10.1038/nrmicro2747. DOI: https://doi.org/10.1038/nrmicro2747

[27] Craigie R, Bushman FD. HIV DNA integration. Cold Spring Harb Perspect Med. 2012;2(7):a006890. doi:10.1101/cshperspect.a006890. DOI: https://doi.org/10.1101/cshperspect.a006890

[28] Archin NM, Margolis DM. Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis. 2014;27(1):29-35. doi:10.1097/QCO.0000000000000026. DOI: https://doi.org/10.1097/QCO.0000000000000026

[29] Flexner C. HIV-protease inhibitors. N Engl J Med. 1998;338(18):1281-92. doi:10.1056/NEJM199804303381808. DOI: https://doi.org/10.1056/NEJM199804303381808

[30] Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol. 2015;13(8):484-496. doi:10.1038/nrmicro3490 DOI: https://doi.org/10.1038/nrmicro3490

[31] Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. Published 2020 May 1. doi:10.3389/fimmu.2020.00827. DOI: https://doi.org/10.3389/fimmu.2020.00827

[32] Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9. doi:10.1172/JCI137244. DOI: https://doi.org/10.1172/JCI137244

[33] Geretti AM, Stockdale AJ, Kelly SH, et al. Outcomes of Coronavirus Disease 2019 (COVID-19) Related Hospitalization Among People With Human Immunodeficiency Virus (HIV) in the ISARIC World Health Organization (WHO) Clinical Characterization Protocol (UK): A Prospective Observational Study. Clin Infect Dis. 2021;73(7):e2095-106. doi:10.1093/cid/ciaa1605. DOI: https://doi.org/10.1093/cid/ciaa1605

[34] Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-7. doi:10.1016/j.thromres.2020.04.013. DOI: https://doi.org/10.1016/j.thromres.2020.04.013

[35] Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-99. doi:10.1056/NEJMoa2001282. DOI: https://doi.org/10.1056/NEJMc2008043

[36] Choi B, Choudhary MC, Regan J, et al. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N Engl J Med. 2020;383(23):2291-3. doi:10.1056/NEJMc2031364. DOI: https://doi.org/10.1056/NEJMc2031364

[37] Danwang C, Noubiap JJ, Robert A, Yombi JC. Outcomes of patients with HIV and COVID-19 co-infection: a systematic review and meta-analysis. AIDS Res Ther. 2022;19(1):3. Published 2022 Jan 14. doi:10.1186/s12981-021-00427-y. DOI: https://doi.org/10.1186/s12981-021-00427-y

[38] Bogdanic N, Gasparovic H, Tadin T, et al. Clinical presentation and outcomes of people living with HIV hospitalized with COVID-19: a multicenter retrospective cohort study from Central and Eastern Europe. BMC Infect Dis. 2023;23(1):191. doi:10.1186/s12879-023-08136-z.

[39] Lopez-Ortiz E, Montoya-Fuentes H, Gandara-Martí T, et al. Clinical characteristics and outcomes of people living with HIV hospitalized with COVID-19 in Mexico City: a retrospective cohort study. BMC Infect Dis. 2024;24(1):96. doi:10.1186/s12879-024-09208-0. DOI: https://doi.org/10.1186/s12879-024-09208-0

[40] Brown J, Alvarez C, Jones D, et al. COVID-19 outcomes in people living with HIV: a multicenter retrospective study from the MedStar Health System. Clin Med Insights Circ Respir Pulm Med. 2022;16:11795484221112345. doi:10.1177/11795484221112345.

[41] Madhi SA, Baillie V, Moore PL. HIV and COVID-19: a review of the literature and global data on prevalence and outcomes. Viruses. 2023;15(2):577. doi:10.3390/v15020577 DOI: https://doi.org/10.3390/v15020577

[42] Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-9. doi:10.1001/jama.2020.6775. DOI: https://doi.org/10.1001/jama.2020.6775

[43] Vizcarra P, Pérez-Elías MJ, Quereda C, et al. Description of COVID-19 in HIV-infected individuals: a single-centre, prospective cohort. Lancet HIV. 2020;7(8):e554-64. doi:10.1016/S2352-3018(20)30164-8. DOI: https://doi.org/10.1016/S2352-3018(20)30164-8

[44] Guo W, Ming F, Dong Y, et al. A survey for COVID 19 among HIV/AIDS patients in two districts of Wuhan, China. SSRN Preprint. 2020. DOI: https://doi.org/10.2139/ssrn.3550029

[45] Cooper TJ, Woodward BL, Alom S, Harky A. Coronavirus disease 2019 (COVID-19) outcomes in HIV/AIDS patients: a systematic review. HIV Med. 2020;21(9):567-77. doi:10.1111/hiv.12911. DOI: https://doi.org/10.1111/hiv.12911

[46] Shalev N, Scherer M, LaSota ED, et al. Clinical Characteristics and Outcomes in People Living With Human Immunodeficiency Virus Hospitalized for Coronavirus Disease 2019. Clin Infect Dis. 2020;71(16):2294-7. doi:10.1093/cid/ciaa635. DOI: https://doi.org/10.1093/cid/ciaa635

[47] Suwanwongse K, Shabarek N. Clinical features and outcome of HIV/SARS-CoV-2 coinfected patients in The Bronx, New York city. J Med Virol. 2020;92(11):2387-9. doi:10.1002/jmv.26077. DOI: https://doi.org/10.1002/jmv.26077

[48] Guo W, Weng HL, Bai H, Liu J, Wei XN, Zhou K, et al. Quick community survey on the impact of COVID 19 outbreak for the healthcare of people living with HIV. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(5):663–7.

[49] Meyerowitz EA, Kim AY, Ard KL, et al. Disproportionate burden of coronavirus disease 2019 among racial minorities and those in congregate settings among a large cohort of people with HIV. AIDS. 2020;34(12):1781-7. doi:10.1097/QAD.0000000000002607. DOI: https://doi.org/10.1097/QAD.0000000000002607

[50] Del Amo J, Polo R, Moreno S, Díaz A, Martínez E, Arribas JR, et al. Incidence and severity of COVID-19 in HIV-positive persons receiving antiretroviral therapy: a prospective cohort study. Clin Infect Dis. 2020;71(16):2294-7. doi:10.1093/cid/ciaa1242. DOI: https://doi.org/10.7326/M20-3689

[51] De Meyer S, Bojkova D, Cinatl J Jr, van der Zee RA, Müller C, Groß R, et al. Lack of Antiviral Activity of Darunavir against SARS-CoV-2. Antimicrob Agents Chemother. 2020 May 21;64(6):e00625-20. doi:10.1128/AAC.00625-20. DOI: https://doi.org/10.1101/2020.04.03.20052548

[52] Chien M, Anderson TK, Jockusch S, Tao C, Li X, Kumar S, et al. Nucleotide analogues as inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. J Proteome Res. 2020 Sep 4;19(11):4690-7. doi:10.1021/acs.jproteome.0c00326. DOI: https://doi.org/10.1021/acs.jproteome.0c00392

[53] Hogan AB, Jewell BL, Sherrard-Smith E, Vesga JF, Watson OJ, Whittaker C, et al. Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study. Lancet Glob Health. 2020 Sep;8(9):e1132-41. doi:10.1016/S2214-109X(20)30288-6. DOI: https://doi.org/10.1016/S2214-109X(20)30288-6

Downloads

Published

2025-08-12

Issue

Section

Reviews

How to Cite

COVID-19 and HIV—Interaction, clinical course, outcome, and prognosis. (2025). Scripta Scientifica Medica, 57(3), 17-23. https://doi.org/10.14748/ngfcp473

Most read articles by the same author(s)